125 research outputs found

    Modelización climática mediante SIG aplicadas a los modelos insulares. El caso del archipiélago balear

    Get PDF
    Ponencia presentada en: III Congreso de la Asociación Española de Climatología “El agua y el clima”, celebrado en Palma de Mallorca del 16 al 19 de junio de 2002.[ES]Siguiendo en la línea de los atlas climáticos desarrollados para Cataluña y la España peninsular, hemos elaborado una cartografía climática digital para el caso del archipiélago balear. Este método de interpolación climática utiliza herramientas típicas de los SIG, análisis estadístico (regresión múltiple) y métodos de interpolación estrictamente matemáticos. Se utilizan los datos de las estaciones meteorológicas (temperatura media del aire –mínimas, medias y máximas– y precipitación) como variables dependientes juntamente con diferentes variables geográficas (altitud, latitud, continentalidad, radiación solar y curvatura del terreno) como variables independientes para realizar la interpolación. También se ha realizado una comparación del comportamiento de las variables geoclimáticas en función de si el territorio estudiado es peninsular o insular.[EN]Following the previous works of the atlas of Catalonia and the atlas of the peninsular Spain, we have obtained a digital cartography for the Balearic Islands. This methodology of climatic interpolation uses GIS tools, statistical analysis (multiple regression) and exclusively mathematical interpolation methods. The data of the meteorological stations (mean air temperature –minimum, mean and maximum– and precipitation) are used as dependent variables and different geographical factors (altitude, latitude, continentality, solar radiation and terrain curvature) are used as independent variables to compute the interpolation. Also we have developed a comparison of the behavior of the geoclimatic variables in function of whether the studied area is a peninsula or an island

    Distribución espacial de la incertidumbre en mapas de cubiertas obtenidos mediante teledetección

    Get PDF
    When combining remote sensing imagery with statistical classifiers to obtain categorical thematic maps it is not usual to provide data about the spatial distribution of the error and uncertainty of the resulting maps. This paper describes, in the context of GeoViQua FP7 project, feasible approaches for methods based on several steps such as hybrid classifiers. Both for “per pixel” and “per polygon” strategies, the proposal is based on the use of the available ground truth, which is used to properly model the spatial distribution of the errors. Results allow mapping the classification success with a very high level of reliability (R2>0,94), providing users a sound knowledge of the accuracy at every area of the map

    Development of a hybrid model to interpolate monthly precipitation maps incorporating the orographic influence

    Get PDF
    [EN] This paper proposes an interpolation model for monthly rainfall in large areas of complex orography. It has been implemented in the Iberian Peninsula (continental territories of Spain and Portugal), Balearic and Canary Islands covering a territory of almost 600.000km(2). To do this a data set that comprises a total number of 11,822 monthly precipitation series has been created (11,042 provided by the Spanish Meteorological Agency and 780 provided by the National Water Resources Information System of the Portuguese Water Institute). The data set covers the period from October 1940 until September 2005. The interpolation model has been based on the assumption of two different components on monthly precipitation. The first component reflects local and seasonal characteristics and 24 different mean monthly precipitation maps (12) and SDs maps (12) compose it. It considers the varying influence of physiographic variables such as altitude and orientation. The second precipitation component reflects the synoptic pattern that dominated each month of the series and it is composed by series of anomalies of monthly precipitation (780). Anomalies have been interpolated by means of ordinary kriging once local spatial continuity was assumed. Gridded maps of each variable have been developed at 200m resolution following a hybrid methodology that implements two different interpolation techniques. The first technique applies a regression analysis to derive maps depending on altitude and orientation; the second one is a weighting technique to consider the non-linearity of the precipitation/altitude dependence. Cross validation has been applied to estimate the goodness of both techniques. Results show an average annual precipitation of 655mm/year. Although this figure is only 4% less than the estimate of MAGRAMA (2004), regional and local differences are highlighted when the spatial distribution is considered. The model constitutes a comprehensive implementation considering the availability of historical records and the need of avoiding slow calculations in large territories.Ministry of Economy, Industry and Competitiveness, Grant/Award Number: CGL2014-52571-RÁlvarez-Rodríguez, J.; Llasat, M.; Estrela Monreal, T. (2019). Development of a hybrid model to interpolate monthly precipitation maps incorporating the orographic influence. International Journal of Climatology. 39(10):3962-3975. https://doi.org/10.1002/joc.6051S396239753910AEMET.2011Atlas Climático Ibérico. (Iberian Climate Atlas) VV.AA. Agencia Estatal de Meteorología. Ministerio de Medio Ambiente. ISBN: 978‐84‐7837‐079‐5. Available at:http://www.aemet.es/documentos/es/conocermas/publicaciones/Atlas-climatologico/Atlas.pdf[Accessed 14th February 2018]Álvarez‐Rodríguez J.2011.Estimación de la distribución espacial de la precipitación en zonas montañosas mediante métodos geoestadísticos (Analysis of spatial distribution of precipitation in mountainous areas by means of geostatistical analysis). PhD Thesis. Polytechnic University of Madrid Higher Technical School of Civil EngineeringÁlvarez-Rodríguez, J., Llasat, M. C., & Estrela, T. (2017). Analysis of geographic and orographic influence in Spanish monthly precipitation. International Journal of Climatology, 37, 350-362. doi:10.1002/joc.5007Barros, A. P., Kim, G., Williams, E., & Nesbitt, S. W. (2004). Probing orographic controls in the Himalayas during the monsoon using satellite imagery. Natural Hazards and Earth System Sciences, 4(1), 29-51. doi:10.5194/nhess-4-29-2004Barstad, I., Grabowski, W. W., & Smolarkiewicz, P. K. (2007). Characteristics of large-scale orographic precipitation: Evaluation of linear model in idealized problems. Journal of Hydrology, 340(1-2), 78-90. doi:10.1016/j.jhydrol.2007.04.005Creutin, J. D., & Obled, C. (1982). Objective analyses and mapping techniques for rainfall fields: An objective comparison. Water Resources Research, 18(2), 413-431. doi:10.1029/wr018i002p00413Daly, C., Neilson, R. P., & Phillips, D. L. (1994). A Statistical-Topographic Model for Mapping Climatological Precipitation over Mountainous Terrain. Journal of Applied Meteorology, 33(2), 140-158. doi:10.1175/1520-0450(1994)0332.0.co;2Daly, C., Halbleib, M., Smith, J. I., Gibson, W. P., Doggett, M. K., Taylor, G. H., … Pasteris, P. P. (2008). Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. International Journal of Climatology, 28(15), 2031-2064. doi:10.1002/joc.1688Daly, C., Slater, M. E., Roberti, J. A., Laseter, S. H., & Swift, L. W. (2017). High-resolution precipitation mapping in a mountainous watershed: ground truth for evaluating uncertainty in a national precipitation dataset. International Journal of Climatology, 37, 124-137. doi:10.1002/joc.4986Dhar, O. N., & Nandargi, S. (2004). Rainfall distribution over the Arunachal Pradesh Himalayas. Weather, 59(6), 155-157. doi:10.1256/wea.87.03Falivene, O., Cabrera, L., Tolosana-Delgado, R., & Sáez, A. (2010). Interpolation algorithm ranking using cross-validation and the role of smoothing effect. A coal zone example. Computers & Geosciences, 36(4), 512-519. doi:10.1016/j.cageo.2009.09.015Fiering, B., & Jackson, B. (1971). Synthetic Streamflows. Water Resources Monograph. doi:10.1029/wm001Gambolati, G., & Volpi, G. (1979). A conceptual deterministic analysis of the kriging technique in hydrology. Water Resources Research, 15(3), 625-629. doi:10.1029/wr015i003p00625Gómez-Hernández, J. J., Cassiraga, E. F., Guardiola-Albert, C., & Rodríguez, J. Á. (2001). Incorporating Information from a Digital Elevation Model for Improving the Areal Estimation of Rainfall. geoENV III — Geostatistics for Environmental Applications, 67-78. doi:10.1007/978-94-010-0810-5_6Goovaerts, P. (2000). Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. Journal of Hydrology, 228(1-2), 113-129. doi:10.1016/s0022-1694(00)00144-xHanson, C. L. (1982). DISTRIBUTION AND STOCHASTIC GENERATION OF ANNUAL AND MONTHLY PRECIPITATION ON A MOUNTAINOUS WATERSHED IN SOUTHWEST IDAHO. Journal of the American Water Resources Association, 18(5), 875-883. doi:10.1111/j.1752-1688.1982.tb00085.xLloyd, C. D. (2005). Assessing the effect of integrating elevation data into the estimation of monthly precipitation in Great Britain. Journal of Hydrology, 308(1-4), 128-150. doi:10.1016/j.jhydrol.2004.10.026Marquı́nez, J., Lastra, J., & Garcı́a, P. (2003). Estimation models for precipitation in mountainous regions: the use of GIS and multivariate analysis. Journal of Hydrology, 270(1-2), 1-11. doi:10.1016/s0022-1694(02)00110-5Martínez-Cob, A. (1996). Multivariate geostatistical analysis of evapotranspiration and precipitation in mountainous terrain. Journal of Hydrology, 174(1-2), 19-35. doi:10.1016/0022-1694(95)02755-6Mitáš, L., & Mitášová, H. (1988). General variational approach to the interpolation problem. Computers & Mathematics with Applications, 16(12), 983-992. doi:10.1016/0898-1221(88)90255-6Naoum, S., & Tsanis, I. K. (2004). Orographic Precipitation Modeling with Multiple Linear Regression. Journal of Hydrologic Engineering, 9(2), 79-102. doi:10.1061/(asce)1084-0699(2004)9:2(79)Ninyerola, M., Pons, X., & Roure, J. M. (2006). Monthly precipitation mapping of the Iberian Peninsula using spatial interpolation tools implemented in a Geographic Information System. Theoretical and Applied Climatology, 89(3-4), 195-209. doi:10.1007/s00704-006-0264-2Pebesma, E. J. (2004). Multivariable geostatistics in S: the gstat package. Computers & Geosciences, 30(7), 683-691. doi:10.1016/j.cageo.2004.03.012Rotunno, R., & Ferretti, R. (2001). Mechanisms of Intense Alpine Rainfall. Journal of the Atmospheric Sciences, 58(13), 1732-1749. doi:10.1175/1520-0469(2001)0582.0.co;2Singh, P., Ramasastri, K. S., & Kumar, N. (1995). Topographical Influence on Precipitation Distribution in Different Ranges of Western Himalayas. Hydrology Research, 26(4-5), 259-284. doi:10.2166/nh.1995.0015Tabios, G. Q., & Salas, J. D. (1985). A COMPARATIVE ANALYSIS OF TECHNIQUES FOR SPATIAL INTERPOLATION OF PRECIPITATION. Journal of the American Water Resources Association, 21(3), 365-380. doi:10.1111/j.1752-1688.1985.tb00147.xTHIESSEN, A. H. (1911). PRECIPITATION AVERAGES FOR LARGE AREAS. Monthly Weather Review, 39(7), 1082-1089. doi:10.1175/1520-0493(1911)392.0.co;2Tobin, C., Nicotina, L., Parlange, M. B., Berne, A., & Rinaldo, A. (2011). Improved interpolation of meteorological forcings for hydrologic applications in a Swiss Alpine region. Journal of Hydrology, 401(1-2), 77-89. doi:10.1016/j.jhydrol.2011.02.010Weber, D., & Englund, E. (1992). Evaluation and comparison of spatial interpolators. Mathematical Geology, 24(4), 381-391. doi:10.1007/bf00891270Weber, D. D., & Englund, E. J. (1994). Evaluation and comparison of spatial interpolators II. Mathematical Geology, 26(5), 589-603. doi:10.1007/bf02089243World Climate Programme.1985. World Meteorological Organization. Review of Requirements for Area‐Averaged Precipitation Data Surface‐Based and Space‐Based Estimation Techniques Space and Time Sampling Accurancy and Error; Data Exchange. Boulder Colorado EE.UU. 17–1

    Influence of climatic variables on crown condition in pine forests of Northern Spain

    Get PDF
    Producción CientíficaThe aim of this study was to find relationships between crown condition and some climatic parameters to identify which are those having a main influence on crown condition, and how this influence is shown in the tree (crown transparency), and to contribute to the understanding of how these parameters will affect under future climate change scenarios

    Contemporary evolution of an invasive plant is associated with climate but not with herbivory

    Get PDF
    Data from Colomer-Ventura et al.Divergence in plant traits and trait plasticity after invasion has been proposed as mechanisms favouring invasion success. Current hypotheses predict a rapid evolution in response to changes in the abiotic conditions in the area of introduction or to differences in the herbivore consumption pressure caused by a decrease in the enemies associated with the area of origin [e.g. evolution of increased competitive ability (EICA) hypothesis]. The importance of these factors in determining plant geographical divergence has not been yet simultaneously evaluated

    Monthly precipitation mapping of the Iberian Peninsula using spatial interpolation tools implemented in a Geographic Information System

    Get PDF
    Premi a l'excel·lència investigadora. Àmbit de les Ciències Socials. 2008In this study, spatial interpolation techniques have been applied to develop an objective climatic cartography of precipitation in the Iberian Peninsula (583,551 km2). The resulting maps have a 200m spatial resolution and a monthly temporal resolution. Multiple regression, combined with a residual correction method, has been used to interpolate the observed data collected from the meteorological stations. This method is attractive as it takes into account geographic information (independent variables) to interpolate the climatic data (dependent variable). Several models have been developed using different independent variables, applying several interpolation techniques and grouping the observed data into different subsets (drainage basin models) or into a single set (global model). Each map is provided with its associated accuracy, which is obtained through a simple regression between independent observed data and predicted values. This validation has shown that the most accurate results are obtained when using the global model with multiple regression mixed with the splines interpolation of the residuals. In this optimum case, the average R2 (mean of all the months) is 0.85. The entire process has been implemented in a GIS (Geographic Information System) which has greatly facilitated the filtering, querying, mapping and distributing of the final cartography

    Inclusive education from a service learning secondary education proposal

    Get PDF
    This project is an attempt to improve the academic inclusion of students in a group of curricular diversification of compulsory secondary education. The project to set up a children's theater show has made possible to put into practice the skills and stimulate learning: inclusion, coexistence, teamwork, equal opportunities. This experience has meant a meeting between formal and non-formal education and involving students in the reality of their environment. It has become an opportunity to involve students in their community and to foster intergenerational contact. The students participating in the experience show their satisfaction with the work done. Thus, they collaborated in the learning of the little ones and they were involved in a very decided way. Likewise, the project has also served to improve one's self-concept. Our proposal is thus linked to Learning-Service, as it combines the learning process of the students with the service to the community, with the intention of improving their immediate environment, and with the social learning of the actors in the educational scenario. Confirming both this difficulty and the need to overcome it for a more optimal performance led us to launch a Service-Learning Project (APS) that included the work of curricular contents and at the same time became a motivation for students, Influencing their self-esteem and involvement in the community.This project is an attempt to improve the academic inclusion of students in a group of curricular diversification of compulsory secondary education. The project to set up a children's theater show has made possible to put into practice the skills and stimulate learning: inclusion, coexistence, teamwork, equal opportunities. This experience has meant a meeting between formal and non-formal education and involving students in the reality of their environment. It has become an opportunity to involve students in their community and to foster intergenerational contact. The students participating in the experience show their satisfaction with the work done. Thus, they collaborated in the learning of the little ones and they were involved in a very decided way. Likewise, the project has also served to improve one's self-concept. Our proposal is thus linked to Learning-Service, as it combines the learning process of the students with the service to the community, with the intention of improving their immediate environment, and with the social learning of the actors in the educational scenario. Confirming both this difficulty and the need to overcome it for a more optimal performance led us to launch a Service-Learning Project (APS) that included the work of curricular contents and at the same time became a motivation for students, Influencing their self-esteem and involvement in the community.This work is based on the initial questions about whether basic competences are achieved in Compulsory Secondary Education in Spain and whether an inclusive education is promoted in Secondary classrooms through the presence and participation of students. Our contribution is inserted in a Research Project that investigates the processes of educational inclusion in Secondary Education

    Projecte científico tècnic de definició de subunitats paisatgístiques del Parc Natural de l'Alt Pirineu

    Get PDF
    La identificació i caracterització de subunitats de paisatge per al Parc Natural de l'Alt Pirineu (PNAP) s'ha fet en base a la Llei 8/2005, de 8 de juny, de Protecció, Gestió i Ordenació del Paisatge la qual estableix que "els catàlegs del paisatge són els documents de carácter descriptiu i prospectiu que determinen la tipologia dels paisatges de Catalunya, identifiquen llurs valors i llur estat de conservació i proposen els objectius de qualitat que han de complir" (Article 10). Igualment, la Llei ha previst que la responsabilitat dels catàlegs sigui de l'Observatori del Paisatge que "és una entitat de suport i col·laboració amb l'Administració de la Generalitat en totes les qüestions relacionades amb l'elaboració, l'aplicació i la gestió de les polítiques de paisatge" (Article 13). Per això, aquest treball es basarà en els criteris establerts per l'Observatori del Paisatge (document de referència pels grups de treball, Olot i Barcelona, maig de 2005) i les bases conceptuals, metodològiques i procedimentals que han elaborat per a la realització dels Catàlegs del Paisatge de Catalunya que s'han recollit en un document anomenat Prototipus de Catàleg de Paisatge (PCP). Com que en l'actualitat aquests paràmetres estan en fase de desenvolupament, aquest Projecte Científico Tècnic de Definició de Subunitats Paisatgístiques per al Parc Natural de l'Alt Pirineu s'ha inspirat en aquest document adaptant-se a les necessitats del Parc i desenvolupant les metodologies proposades. El document que es presenta recull la Primera Fase del treball, que s'ha destinat al tractament i adequació de la informació existent (cartogràfica i escrita) per a la delimitació i definició posterior de les diferents subunitats de paisatge

    Spatio-Temporal Characteristics of Global Warming in the Tibetan Plateau during the Last 50 Years Based on a Generalised Temperature Zone - Elevation Model

    Get PDF
    Temperature is one of the primary factors influencing the climate and ecosystem, and examining its change and fluctuation could elucidate the formation of novel climate patterns and trends. In this study, we constructed a generalised temperature zone elevation model (GTEM) to assess the trends of climate change and temporal-spatial differences in the Tibetan Plateau (TP) using the annual and monthly mean temperatures from 1961-2010 at 144 meteorological stations in and near the TP. The results showed the following: (1) The TP has undergone robust warming over the study period, and the warming rate was 0.318°C/decade. The warming has accelerated during recent decades, especially in the last 20 years, and the warming has been most significant in the winter months, followed by the spring, autumn and summer seasons. (2) Spatially, the zones that became significantly smaller were the temperature zones of -6°C and -4°C, and these have decreased 499.44 and 454.26 thousand sq km from 1961 to 2010 at average rates of 25.1% and 11.7%, respectively, over every 5-year interval. These quickly shrinking zones were located in the northwestern and central TP. (3) The elevation dependency of climate warming existed in the TP during 1961-2010, but this tendency has gradually been weakening due to more rapid warming at lower elevations than in the middle and upper elevations of the TP during 1991-2010. The higher regions and some low altitude valleys of the TP were the most significantly warming regions under the same categorizing criteria. Experimental evidence shows that the GTEM is an effective method to analyse climate changes in high altitude mountainous regions
    corecore